

Overview

Consumer Information Gateway Development and Integration to Enable Price-Responsive and Direct Load Control

Department of Energy RDSI Grant (2009-2015)

- Reduced Peak demand by over 65% (Compared to code built homes)
- 50% Cost Share

Partnership

• NV Energy, Pulte Homes, UNLV

Project Site Villa Trieste

• 185 LEED Platinum homes completed

Integration Objectives

- Smart Meters
- Distributed Generation ~ 2 kW PV Systems
- Residential Battery Storage ~ 8 kWh Lithium-Ion
- Energy Efficient Construction
- Display of Aggregated Energy Information
- Demand Responsive Thermostats
- Automated Intelligent Agents

NV Energy Objectives

Test/Validate	 Test and integrate new technologies (smart meters, home energy management systems, storage, PV)
Technology Integration	 Effectively integrate premise-based systems with grid management
Demand Side Management	 Develop and optimize peak load management strategies
Grid Impacts	 Evaluate potential grid benefits of premise-based systems
Customer Impacts	 Gauge customer impact and interaction with energy management systems
Cost Effectiveness	 Assess cost/benefit of technology packages
Technology Roadmap	 Develop distributed energy resources roadmap and new customer energy solutions

Current Status

All Homes Sold

• Include PV systems and home energy management systems

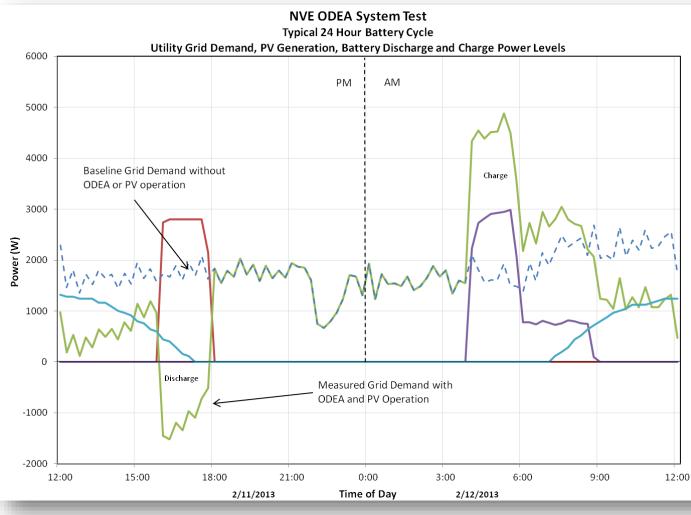
10 Battery Energy Storage Systems (BESS) Installed

• Five more systems ordered

Smart Meter Gateways Installed

- Redundant hardware exists for energy information collection
- Hardware based information display technology

Integration Testing On-Going


- BESS hardware and software still in testing phase
- Still need to fully integrate premise-based systems and grid systems
- Integration challenges persist due to varying levels of technology maturity and integration challenges related to vendor product design and implementation strategies

Battery Testing Ongoing

[Battery plus PV System]

• Green:

Customer's net demand for energy from the grid

- Red: Battery discharge
- Purple: Battery charge
- Blue (solid):
 PV output
- Blue (dashed): Customer's baseline

Next Steps

Improve Real-Time Energy Information

Expand/Enable software based displays using tablets, mobile phone, computer

Continue Integrations

Integrate BESS with Premise-Based Systems Integrate Premise-Based Systems with NV Energy Systems

Explore Additional Benefits

Attempt to configure BESS to support:Voltage, frequency, and renewable firming use-cases

Existing and Potential Grid Benefit Streams

Existing:	Peak Shaving / Shaping		
Traditional Demand Response (DR)	Operating Reserve (10-min spinning reserve)		
	Generation Dispatch Optimization		
Potential: Demand Response + PV + Battery Storage	Area and Distribution Operations:	Frequency Regulation Voltage Support Power quality control	
	Renewables Integration	Firming intermittent generation (e.g., PV) Renewable Energy Time-Shift	
	Customer Benefits	Cost reduction depending upon rate structure Receiving benefits for delivering grid services	

Key Findings & Identified Gaps

Key Findings

- Lessons learned allowed NV Energy to launch next generation demand response systems
- Value of Integrated Energy Efficiency and Demand Response
- Networked platforms facilitate data rich applications and remote upgrade capabilities
- Two types of optimization—premise specific and grid level—can interoperate for higher all around value
- Traditional DR vs Fast DR and DERs
- Battery permitting and inspection processes were defined

Identified Gaps

- Battery Energy Storage System maturity level
- Standards and Open protocols
- Significant variation across technology vendors
- DRMS (or EMS) requires evolution to DERMs
- DER grid services benefits not actualized yet

BERKSHIRE

OWNERSHIP

Thank You

